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Abstract--The free motion of a single cylindrical particle in an incompressible sinusoidally horizontally 
and vertically oscillating flow field under consideration of the gravity field is investigated. A new numerical 
method based on the overlapping grid approach is developed. The influence of Reynolds number and 
density ratio on the particle motion is also discussed. 
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I N T R O D U C T I O N  

The unsteady motion of solid particles in an unstationary flow field is of great interest in many 
engineering applications. The forces acting on the particles have either quasistationary (e.g. the 
gravity force on a particle in a fluid at rest) or time-dependent origin (e.g. the motion of particles 
in a turbulent flow field). Small particles moving in a turbulent flow field are embedded in turbulent 
eddies (characteristic length of  the particle < length of the turbulent eddy). In this case the particle 
inflow is irregular in all directions. Due to the complexity of the above-mentioned problem, the 
particle motion in a sinusoidally oscillatory flow field will be numerically investigated. Previous 
experimental and theoretical works are restricted to vertical oscillations (oscillations parallel to the 
settling direction) of spherical particles. The motion of non-spherical particles plays an important 
role in many branches of science such as aerosol physics, rheology, biology and atmospheric 
science. In the present work the motion of a cylindrical fiber-like particle (particle diameter 
<< particle length) in a vertically and horizontally (perpendicular to the settling direction) oscillating 
flow field will be examined. Several researchers have found that: larger fibres, with Rep greater than 
about 0.01, will settle with their major axis oriented perpendicularly to the direction of motion. 
With increasing Rep, longer fibres are still stable in the perpendicular orientation (see Willeke et al. 
1992). 

Experimental works on spherical particles were carried out, for example, by Schoeneborn 
(1975), Odar & Hamilton (1964), Odar (1966), A1-Taweel & Carley (1964), Baird et al. (1967) and 
Zimmermann et al. (1987). Most of the numerical computations (spherical particles) are restricted 
to low Reynolds number flows, where approximate theoretical calculations can be made by the 
methods of  singular perturbation expansions [see, for example, Lovalenti & Brady (1993)]. For 
particles in the intermediate Reynolds number flows, which are most common in engineering 
applications, it is necessary to solve the complete unstationary Navier-Stokes equations numerically. 
A numerical computation of  this sort is fraught with several problems, e.g. the need for very 
powerful computers and the lack of appropriate numerical modelling for the free particle motion. 
The latter problem is synonymous with the well-known problem of  grid generation for the 
simulation of solid body movement in a fluid. The application of data from the calculation of fixed 
particles with constant or oscillatory local velocities of inflow [see, for example, Mei et al. (1991) 

or Kim et al. (1993)] for the case of freely moving particles is rarely possible, since the governing 
differential equations (Navier-Stokes equations) are only Galilei-invariant. For treatment of this 
kind of problem, Loehner (1988) suggests a global remeshing approach in combination with an 
ALE method. After each numerical time step the numerical grid will be examined. If the grid is 
distorted, a new mesh will be generated. The method of remeshing is, in practice, very complicated 
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and CPU-time intensive. Other solutions, such as the method described by Raju & Sirignano 
(1990), enable the motion of particles in one dimension alone. 

Overlapping grids have been used in the last 20 years to easily generate meshes for complicated 
regions [see, for example, Unverdi & Tryggvason (1992), Chesshire & Henshaw (1989) and Benek 
et al. (1985)]. Most of  the calculated examples in the above investigations are restricted to the 
numerical calculation of  the Euler equations for fixed rigid bodies. 

Here we extend the overlapping grid method for the modelling of freely moving particles in a 
two-dimensional transient incompressible flow field. 

N U M E R I C A L  M E T H O D  

The calculated problems are oriented to the experimental set-up of Schoeneborn with some 
modifications. A cylindrical particle is located in a rectangular domain. The dimensions of  the flow 
domain are 20 × 30 particle diameters. The directions of the x-  and y-axes and the particle position 
are shown in figure 1. The gravity force acts in the negative x-axis. The particle is positioned at 
five particle diameters from the top boundary of the rectangular domain. The outer boundaries 
of  the rectangular grid can be oscillated sinusoidally in the vertical and the horizontal directions. 
The flow field near the outer boundary will then have the same pulsating velocity. 

The equations governing the motion of unsteady, viscous and incompressible flow are the 
Navier-Stokes equations supplemented by the incompressibility condition. These are: 

V V = O  

~V 1 
0~- + (VV)V = - - -  Ap + v fAV + F 

P 

V is the velocity field, p and v r are the density and the kinematic viscosity of  the fluid, respectively, 
P is the pressure and F is the sum of the field forces (here the gravity force). 
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Figure 1. The position of the particle in the rectangular flow domain, 
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The Navier-Stokes equations are solved numerically with the help of a finite difference method 
in two different co-ordinate systems. A major Cartesian grid is generated for the whole rectangular 
flow field. A minor grid is then overset on the major grid so as to resolve the flow around the 
cylindrical particle without requiring the mesh boundaries to join in any special way. Since 
the cylindrical particle is an impermeable body, the points of the major grid that fall within the 
particle (or a curve of the minor grid that circumscribes the particle) are excluded or blanked from 
the flow field resolution. The boundary of this hole in the major grid becomes the first of two 
interface boundaries. Data for this hole boundary must be supplied from the solution of the overset 
cylindrical grid. The outer boundary of the minor grid forms the second interface in this problem 
and nearby points from the major grid are used to supply flow values along the minor outer 
boundary. The flow field solutions on each grid are connected by transferring boundary 
information across these two interfaces. 

For the exchange of data between the grids, a bilinear and a biquadratic interpolation are used. 
The deviation of the results between both interpolation schemes is negligible. The convective 
terms in the Navier-Stokes equations are discretized with a combination of upwind and central 
differencing, the viscous terms with the central differencing scheme. For pressure-velocity 
correction, a checkerboard form and a multigrid form of the SOLA algorithm [see Hirt (1975)] 
are used. A staggered grid spacing is applied. Special care must be taken in order to account for 
the realization of various boundary conditions in the staggered grid, e.g. free slip and no slip 
boundaries with or without vertical and horizontal oscillations. A detailed description defining 
the various boundary conditions in a staggered mesh can be found, for example, in the work of 
Kiehm (1986). The boundary conditions applied to the particle surface are the no-slip and, on the 
outer boundary of the fluid, the free-slip condition with oscillation. The forces and the torque on 
the particle will be evaluated by integration of the data from the velocity and pressure values 
on the particle surface; these can easily be obtained from the cylindrical grid. The velocity field of 
the particulate phase will be described by the kinematic relationships of the rigid body movements. 
The velocities are scaled with the stationary settling velocity in a fluid at rest, the length scale with 
the particle diameter, the pressure with the stagnation pressure and the field forces with the Froude 
number. 

The algorithm for the advancement of  the numerical solution of  the fluid flow and the particle 
motion in the time domain are as follows: 

(I) Generate a rectangular Cartesian grid (major grid) and a cylindrical grid (minor grid) sur- 
rounding the particle. Define the position of the particle in the main flow field (major grid). 

(2) • The cells of the major grid which are inside the overlapped cylindrical grid (except the 
cells of the overlapped region) will be marked and blanked. 

• Boundary conditions obtained from the cylindrical grid will be defined on the interface 
boundaries of the marked and fluid cells of the major grid. 

(3) Solve the Navie~Stokes equation in the major Cartesian grid. 
(4) Interpolate the boundary conditions on the outer boundary of the cylindrical minor grid 

from the major grid. Subsequently, solve the Navier-Stokes equations for the cylindrical 
grid. 

(5) Determine the forces and the torque on the particle surface and calculate the velocity 
of the solid body with the help of the kinematic formulation of a rigid body movement. 
Move the particle in the major grid. Return to step (2). 

The program code is highly vectorized and is carried out on the vector computer at the University 
of Karlsruhe (SIEMENS-FUJITSU $600). The required CPU-time for each computed case 
depends on the amplitude and frequency of  the fluid oscillation and amounts to several hours. 

RESULTS 

The following cases are calculated: 

• The flow around a fixed cylindrical particle with a constant inflow velocity (no oscillation). 
• The flow around a cylindrical particle settling in a bounded fluid at rest (no oscillation). 
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• The settling mot ion  of  a cylindrical particle in a bounded horizontal  oscillating fluid. 
• The settling mot ion  of  a cylindrical particle in a bounded vertical oscillating fluid. 

For  all cases, the initial velocity of  the particle and the fluid field is set at zero. 
The first case serves to improve the reliability o f  the numerical results for various Reynolds 

numbers.  The discrepancies between the calculated drag coefficient C~ of  a fixed particle (for a 
constant  inflow velocity, no oscillation) and the experimental data from Schlichting (1982) for 
various Re numbers  are about  3 -5%.  These discrepancies are due to the two-dimensional 
calculation o f  the flow field. Some results o f  the last two cases will be discussed here. The following 
velocity plots are presented in a Lagrangian approach  (the viewer is located at the particle surface). 

X 

oscillation 

y 

Figure 2. Flow field around the particle for maximal values of the oscillation for A =0.1, (o = 10, 
pr/pt.= 2.7 and Re = 100 (negative y-direction). 
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The hor&ontal oscillation of the fluid 

The settling motion of a particle is followed over 20 time scales. The amplitude of the oscillation 
is 0.1 particle diameter and the angular frequency is 10. Figures 2, 3 and 4 present the velocity field 
around the particle for maximal values (in the negative and positive y-direction) and the zero 
passage of the oscillation. The displacement of  the front stagnation point is recognizable. This effect 
is due to the combined effect of  the settling velocity and the additional perpendicular particle 
velocity caused by the horizontal fluid oscillation. In the wake of  the particle another stagnation 
point develops which depends on the position of the front stagnation point, the elapsed time, the 
amplitude and the frequency of the oscillatory fluid flow. The flow field in the wake of  the particle 
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Figure 3. Flow field around the particle for maximum values of the oscillation for A = 0.1, o~ = I0, 
Pp/Pr = 2.7 and Re = 100 (positive)'-direction). 
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is highly affected by the oscillatory horizontal fluid flow, which prevents vortex shedding in the 
wake of the particle except for the case where the oscillation has nearly zero passage (figure 4). 
The circulatory flow around the particle causes additional buoyancy (magnus) forces on the particle 
(see figures 2 and 3). 

The vertical oscillation of the fluid 

Experimental works concerning this problem are mentioned above. A strict comparison of the 
experimental data to the numerical calculations of the present investigation is, due to the 
discrepancies between the flow around cylindrical and spherical bodies, not possible. The settling 
motion of a particle in an oscillatory flow field is influenced by the following parameters: 

X 
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y 

Figure 4. Flow field a round  the particle for the zero passage o f  the oscillation for A = 0.1, ~,~ = 10, 
Pp/PI '  = 2.7 and Re = 100. 
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Table I. Computed  cases 

Reynolds number  Density ratio Amplitude Angular  frequency 
Re Pp/Pf A eJ 
100 1.5 0.1-0.6 10 
100 1.5 0.5 2-13 
100 2.7 0.1-0.6 l0 
100 2.7 0.5 2-13 
300 2.7 0.1-0.6 10 
300 2.7 0.5 2-13 

(a) Reynolds number Re, (b) the density ratio between the particle and the fluid pp/pf, and (c) the 
angular frequency o9 and amplitude A of the oscillation. The variation of the angular frequency 
and amplitude takes place in the range of 0-13 and 0.1-0.6 particle diameters. The Reynolds 
numbers have values of 100 and 300, the values of the density ratios are pp/pp = 1.5 (synthetic 
material particles in water) and 2.7 (glass particles in water). Table 1 gives an overview of the 
computed cases. 

Figures 5 and 6 present the velocity field surrounding the particle (cylindrical grid) shortly after 
the settling motion of the particle. As seen in the vector plots, the oscillation alternates with and 
against the direction of the settling velocity. The velocities in the plots are scaled with the maximal 
velocity Vmax of  the flow field. The velocity field in the lower and upper half of the presented flow 
domain is fully symmetrical. 

Figures 7 and 8 show the velocity field of more than nine time scales. In the case where the 
oscillatory flow is in the direction of the settling velocity, a relatively strong flow can be recognized 
in the particle wake. The velocity field for these cases is likewise approximately symmetrical. 

Phase lag. The phase lag for all the computed cases is small. Figure 9 demonstrates the 
comparison of  the particle velocity with the fluid velocity for Re = 100, Pp/Pf = 1.5, A = 0.5 and 
o9 = 5. According to the experimental investigations of A1-Taweel & Carley a noticeable phase lag 
can be expected at higher density ratios (pp/pf>~ 10). 

Forces. The maximal values of the forces on the particle (oscillatory part) are correlated with 
the maximal values of  the fluid acceleration A • (D 2 (see figure 10). The relationship is linear and 
is a function of the density ratio. The maximal forces are nearly identical for the density ratio 
pp/pf = 2.7 and the Reynolds numbers Re = 100 and 300. 

Amplitude ratio. The amplitude ratio is characteristic of the particle-fluid interaction. It is defined 
as: 

Ac amplitude of the fluid oscillation 

Ap amplitude of the particle oscillation 

Figures 11 and 12 present the amplitude ratio versus the variation of the frequency and the 
amplitude of  the fluid oscillation. The amplitude ratio decreases with the increase of fluid frequency 
and density ratio (the influence of the flow field on the particle motion decreases). It tends to a 
constant value at high frequencies. Compared to the density ratio, the influence of  Reynolds 
number on the amplitude ratio is negligible. 

The behaviour of the amplitude ratio versus the amplitude of the fluid oscillation is nearly 
constant. This means that variation of the chosen amplitude has no substantial effect on the 
amplitude ratio (the fluid-particle interaction). The influences of the Reynolds number and the 
density ratio on the amplitude ratio are nearly the same as in the case of frequency variation. 

Retarding effect. The ratio of the average fall velocity in an oscillating flow field to the fall velocity 
in a fluid at rest is called the retarding effect. It is defined as: 

V* average settling velocity in an oscillating flow field 
V~ average settling velocity in a fluid at rest 

Figures 13 and 14 demonstrate the retarding effect versus the frequency and amplitude of the 
oscillation. The retarding effect increases with the increase of frequency and amplitude of the fluid 
oscillation. The retarding effect increases with the increase of the density ratio and the decrease 
of  the Reynolds number. 
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Fig. 5(a). Caption opposite. 
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F igure  5. (a) F low field a round  the par t ic le  for the case tha t  the osci l la t ion is aga ins t  the part icle  set t l ing 
d i rec t ion  for A = 0.5, ~o = 5, pp/pf = 1.5, t = 0.31, Re = 100 and Vm, x = 1.678. (b) Par t ic le  set t l ing veloci ty  

vs t ime for (a). 
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F igure  6. (a) F low field a round  the par t ic le  for the case tha t  the osci l la t ion is in the par t ic le  set t l ing 
d i rec t ion  for A = 0.5, co = 5, Po/Pf = 1.5, t = 0.96, Re = 100 and Vm,x = 1.57. (b) Par t ic le  set t l ing veloci ty  

vs t ime for (a). 
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Figure 7. Flow field a round the particle for the case that the oscillation is against the particle settling 
direction for A = 0.5, co = 5, p p / p f  = 1.5, t = 10.38, Re = 100 and i'm, X = 2.83. (b) Particle settling velocity 

vs time for (a). 
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Figure 8. (a) Flow field a round  the particle for the case that the oscillation is in the particle settling 
direction for A = 0.5, to = 5, Pp/Pr = 1.5, t = 9.77, Re = 100 and V,,a~ = 1.55. (b) Particle settling velocity 

vs time for (a). 
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Figure 11. Amplitude ratio vs the variation of the frequency for A = 0.5. 
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C O N C L U S I O N S  

The method of  overlapping grids can be easily applied to the problem of  particle motion in an 
unsteady flow field. Several types of problems can be solved with this grid approach. Numerical 
computations of a cylindrical particle motion in a sinusoidally horizontally and vertically oscillating 
flow were performed. In both cases the flow around the particle is distinguished from the flow 
around a fixed particle. These differences essentially appear in the wake of the particle. For 
horizontal oscillation of the flow field the front stagnation point is displaced. A second stagnation 
point is developed in the particle wake. The influences of Reynolds number and density ratio on 
the forces (on the particle), the amplitude ratio and the retarding effect have been investigated with 
regard to the vertical oscillation of the flow field. There is a weak influence of the Reynolds number 
on the forces and the amplitude ratio. The influence of density ratio is dominant. Further work 
must be carried out for the three-dimensional numerical simulation of spherical particles in 
unsteady oscillatory flows. 
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